Electroencephalography (EEG) Analysis of Alcoholic and Control Subjects Using Multiscale Permutation Entropy

نویسندگان

  • Lal Hussain
  • Wajid Aziz
  • Sajjad Ahmed Nadeem
  • Saeed Arif Shah
چکیده

Brain electrical activity as reflected in Electroencephalography (EEG) have been analyzed and diagnosed using various techniques. Among them complexity measure, nonlinearity, disorder and unpredictability play vital role due to nonlinear interconnection between functional and anatomical subsystem emerged in brain in healthy state and during various diseases. There are many social and economical issues of alcoholic abuse as memory weakness, decision making, impairments and concentrations etc. Alcoholism not only defect the brains but also associated with emotional, behavior and cognitive impairments damaging the white and gray brain matters. A recently developed signal analysis method i.e. Multiscale Permutation Entropy (MPE) is proposed to estimate the complexity of long-range temporal correlation time series EEG of Alcoholic and Control subjects acquired from University of California Machine Learning repository and results are compared with MSE. Using MPE, coarsed grained series is first generated and the PE is computed for each coarsed grained time series against the electrodes O1, O2, C3, C4, F2, F3, F4, F7, F8, Fp1, Fp2, P3, P4, T7 and T8. The results computed against each electrode using MPE gives higher significant values as compared to MSE as well as mean rank differences accordingly. Likewise, ROC and Area under the ROC also gives higher separation against each electrode using MPE in comparison to MSE. Keywords—Electroencephalogram (EEG), Multiscale Permutation Entropy (MPE), Multiscale Sample Entropy (MSE), Permutation Entropy (PE), Mann Whitney Test (MMT), Receiver Operator Curve (ROC), Complexity Measure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Multiscale Information for Short Physiological Time Series

This paper presents a multiscale information measure of Electroencephalogram (EEG) for analysis with a short data length. A multiscale extension of permutation entropy (MPE) is capable of fully reflecting the dynamical characteristics of EEG across different temporal scales. However, MPE yields an imprecise estimation due to coarse-grained procedure at large scales. We present an improved MPE m...

متن کامل

Applying Improved Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG

Electroencephalography (EEG) is considered the output of a brain and it is a bioelectrical signal with multiscale and nonlinear properties. Motor Imagery EEG (MI-EEG) not only has a close correlation with the human imagination and movement intention but also contains a large amount of physiological or disease information. As a result, it has been fully studied in the field of rehabilitation. To...

متن کامل

Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis.

Understanding the transition of brain activities towards an absence seizure, called pre-epileptic seizure, is a challenge. In this study, multiscale permutation entropy (MPE) is proposed to describe dynamical characteristics of electroencephalograph (EEG) recordings on different absence seizure states. The classification ability of the MPE measures using linear discriminant analysis is evaluate...

متن کامل

A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring

OBJECTIVE Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural pop...

متن کامل

Multiscale Entropy Analysis of Eeg from Patients under Different Pathological Conditions

Multiscale sample entropy (MSE) of human electroencephalogram (EEG) data from patients under different pathological conditions of Alzheimer’s disease (AD) was evaluated to measure the complexity of the signal. Quantifying the complexity level with respect to various temporal scales, MSE analysis provides a dynamical description of AD development. When compared to EEG data from normal subjects, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015